Huntsman Turns 50! Education Department Turns 36!

The Huntsman idea took root in 1967 when Dr. John Anderson became the director of the St. Andrews Biological Station (SABS). He saw a need to revive research collaborations between government and universities, to “ensure that young Canadian students were awakened to the challenging opportunities afforded by a career in the marine sciences”.

In 1969, Dr. Anderson’s idea became a reality and the Huntsman Marine Laboratory was founded. The name of the laboratory was chosen to honour Dr. Archibald Gowanlock Huntsman, who was a pioneer in Canadian fish biology and oceanography, director of SABS from 1919-1934 and a professor at the University of Toronto.

In 1987, the name became the Huntsman Marine Science Centre to recognize that the organization had changed to be more than just a field station.

Over the years the Education Department has evolved. Many of the early school groups used to come on the train, now they come on big coach buses or fly into the Saint John airport. Groups were 15-20 students, now they can top 50 and fit into every nook and cranny of the student residences. Some of the schools that participated in the early years still come today. Relationships have been developed over 36 years. Each group receives an individualized schedule based on their curriculum and interests. When the school groups are here they take full advantage of the campus; staying overnight in our residences, having meals in the dining room, using the research vessel, and studying in the wet labs.

As we look to the future we will continue our mission of inspiring stewards of the marine environment one student group at a time! Everywhere we go, to teachers’ conferences or other events we are fondly greeted by people remembering a time they came to the Huntsman as a student.

“I think the greatest contribution the Huntsman will make to Canada will come from its education programs, in particular the ones for school children. Every time I see a group of elementary school students marching off to the mudflats, I wonder how many are future A.G. Huntsmans who may later count their experience in St. Andrews as the spark turning on the marine sciences’ light.”

- Dr. John Anderson
Huntsman’s 30th anniversary annual report
Young Explorer Weeks

Enjoy educational games, activities, crafts, animal encounters and field excursions. Each week will cover different topics. Programs run 9:30am to 3pm and are open to ages 5-11.

July 15 to 19 - Week 1
July 29 to August 2 - Week 2

Young Explorer Days

Sharks, whales, seals or sea stars…no matter what your young explorer is passionate about, there’s a marine experience waiting that is sure to surprise and delight! Programs run 9:30am to 3pm and are open to ages 5-11.

July 10 - Lobster Day
July 17 - Microscopic Life Day
July 24 - Shark Day
July 31 - Sea Star Day
August 7 - Seal Day
August 14 - Whale Day
August 21 - Seabird Day

Jeunes Explorateurs

Les après-midi des jeunes explorateurs pour les jeunes âgés de 5 à 11 ans sont donnés les mardis 23 juillet et 13 août, de 13h à 15h. Ce programme sera donné en français par un instructeur bilingue.

Mardi le 23 juillet - Les requins
Mardi le 13 août - Les baleines

This program will be taught in French by a bilingual instructor.

Please register in advance for programs. Registration can be completed by email lbarrett@huntsmanmarine.ca or phone (506) 529-1226.
All Things Marine: Above & Below

We are very excited to announce the Huntsman was chosen to receive a Trident Underwater Drone as part of the Science Exploration Education (S.E.E.) Initiative with National Geographic Open Explorer!

Before launching our Trident in the strong currents of the Bay of Fundy we went for a test run in the pool at the local hotel. We novices who didn’t grow up with video games had a bit of a learning curve with the controller. I am sure students will have an easier time maneuvering the Trident.

A few bumps into the walls and along the bottom saw us unintentionally test out the durability of the Trident. We didn’t see any marine life in the pool, but did end up giving one swimmer a bit of a fright. We definitely need a second test run before we launch our Trident in the ocean!

Deploying our Trident will allow students to see marine creatures undisturbed in their natural environment. These visuals will complement handling the real animals and increase the understanding of life in the benthic environment.

Follow our expedition, All Things Marine: Above and Below, online at National Geographic Open Explorer, https://openexplorer.nationalgeographic.com/expedition/allthingsmarine.

Welcome Back!

In April the Huntsman Education Department added a new staff member, Taneesha Sharpe. Here she tells us a bit about herself.

Hi! My name is Taneesha. I am the Junior Education & Outreach Officer here at the Huntsman Marine Science Centre.

I grew up in the small town of St. Stephen, New Brunswick. As a child, I loved school and had a passion for learning. Somewhere between writing pages of notes and doing dissections, I decided to pursue biology. I completed the first half of a Bachelor of Science in Biology at Acadia University. Feeling homesick, I finished my degree a little closer to home at the University of New Brunswick in Fredericton. During my time at UNB, I was a volunteer tutor for Frontier College. As part of my volunteer work, I was placed in a 3rd grade class at Barker Point School, where I found my niche in teaching.

In my spare time, I coach competitive cheerleading, advocate for mental health and talk about how much I love dogs to anyone who will listen.

I really enjoyed my time in the education department as an intern last summer and I’m ecstatic to be back again!
Sea Creature Facts: Orange-footed Cucumber

This is the most common sea cucumber is the Bay of Fundy. Its scientific name, *Cucumaria frondosa* literally translates to leafy sea cucumber.

Insights

- Fits in a group of animals called Echinodermata with sea stars, sea urchins and sand dollars
- Five bands of orange tube feet for movement and attachment to the sea floor
- 10 bushy tentacles around the mouth collect plankton and detritus
- Inserts tentacles into the mouth, one at a time, to remove trapped food
- Breathe via the anus
- Have a top and a bottom; underside often lighter in colour
- Sexes are separate; breed through broadcast spawning
- Larvae are planktonic
- Eaten as a delicacy in some countries
- Small local fishery in Southwest New Brunswick

Activity: Collect & Observe Plankton

Grade level:
Elementary and up

Purpose:
To learn about the life in a drop of water.

Background:
The word plankton is derived from a Greek word that means drifter. These drifting organisms can range in size from tiny, microscopic bacteria all the way up to large, jellyfish.

Plankton are divided into two groups, phytoplankton and zooplankton. Phytoplankton use photosynthesis to grow, so require sunlight, water, carbon dioxide and nutrients. They produce up to two-thirds of the oxygen on Earth and are the base of the marine food chain. Phytoplankton are green-golden in colour, unicellular, many do not move and they have simple shapes.

Zooplankton are multicellular, transparent and have many weird and wonderful shapes. Some zooplankton, such as copepods (i.e. Plankton from SpongeBob), live their whole life in the plankton layer. Many animals such as sea cucumbers, sea stars, crabs, lobsters and certain fish start their life in the plankton layer.

Materials:
- knee high pantyhose
- wire coat hanger
- glass jar with a lid
- duct tape
- elastic
- plankton ID sheets
- microscope/hand lenses

Procedure:
1. Introduce plankton to the students.
2. Construct the plankton nets. Shape the wire coat hanger into a circle. Shape the hook into a handle.
3. Loop the cut edge of the panty hose around the wire circle. Use duct tape to seal the seam. Fold duct tape over the wire and the panty hose to hold in place.
4. Place the open jar in the toe of the panty hose. Place the elastic around the neck of the jar.
5. Slowly pull the plankton net behind a boat or behind you as you walk along a shoreline or wharf. The net can also be placed into fast moving water from a bridge or dock. Don’t let the net drag on the ground.
6. Look at the collected plankton using a microscope or hand lens.
7. Have students identify and draw the phytoplankton and zooplankton from the collected samples.
8. Extension: Can the students suggest ways to modify the plankton net or make it better?
9. Extension: Compare plankton collected from saltwater and freshwater. Compare plankton collected at different times of the year.